Confidence Intervals
(\(\sigma\) known)
EXAMLE
A researcher wishes to estimate the number of days it takes an automobile dealer to sell a Chevrolet Aveo. A random sample of 5 cars had a mean time on the dealer's lot of 54 days. Assume the population standard deviation t 6 days. Find the best point estimate of the population mean and the 95% confidence interval of the population mean.
Step 1:
Organize the given information
\[n=50\]
\[\overline{x}=54\]
\[\sigma=6\]
\[C=95\%\]
Step 2:
Find the \(Z_{\frac{\alpha}{2}}\) value by either using the z-table or the quick chart.
\[Z_{\frac{\alpha}{2}}=1.96\]
Step 3:
Plug into our formula
\[\overline{x}-Z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\leq \mu\leq \overline{x}+Z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}} \]
\[54-(1.96)\cdot\left(\frac{6}{\sqrt{50}}\right)\leq\mu\leq 54+(1.96)\cdot\left(\frac{6}{\sqrt{50}}\right) \]
\[52.3\leq\mu\leq 55.7\]